Immunology
173.7K views | +19 today
Follow
Immunology
Teaching and Learning Immunology. Information you never would have searched for!
Your new post is loading...
Your new post is loading...
Rescooped by Gilbert C FAURE from Virus World
Scoop.it!

SARS-CoV-2 and Innate Immunity: the Good, the Bad, and the “Goldilocks” - Review

SARS-CoV-2 and Innate Immunity: the Good, the Bad, and the “Goldilocks” - Review | Immunology | Scoop.it

An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.

 

Published in Cell. Mol. Immunology (Nov. 20, 2023):

https://doi.org/10.1038/s41423-023-01104-y 


Via Juan Lama
Gilbert C FAURE's comment, November 25, 2023 4:42 AM
intéressant pour aborder le sujet de l'immunité innée dans le covid
Gilbert C FAURE's comment, November 25, 2023 4:44 AM
voir les rôles des interférons dans les réponses antivirales...
Rescooped by Gilbert C FAURE from Virus World
Scoop.it!

Evasion of Type-I Interferon by SARS-CoV-2

Evasion of Type-I Interferon by SARS-CoV-2 | Immunology | Scoop.it
The coronavirus disease 2019 (COVID-19) is determined by SARS-CoV-2 replication and host immune response, but studies evaluating viral evasion of immune response are lacking. Here we employed unbiased screening to identify SARS-CoV-2 proteins that antagonize type-I interferon (IFN-I) response. Three proteins were found to antagonize IFN-I production via distinct mechanisms: nsp6 binds TBK1 to suppress IRF3 phosphorylation; nsp13 binds and blocks TBK1 phosphorylation; and ORF6 binds importin KPNA2 to inhibit IRF3 nuclear translocation.
 
Two sets of viral proteins were identified to antagonize IFN-I signaling through blocking STAT1/STAT2 phosphorylation or nuclear translocation. Remarkably, SARS-CoV-2 nsp1 and nsp6 suppressed IFN-I signaling more efficiently than SARS-CoV and MERS-CoV. Thus, when treated with IFN-I, a SARS-CoV2 replicon replicated to a higher level than chimeric replicons containing nsp1 or nsp6 from SARS-CoV or MERS-CoV. Altogether, the study has provided insights on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.
 
Published in Cell Reports (September 19, 2020):

Via Juan Lama
No comment yet.
Scooped by Gilbert C FAURE
Scoop.it!

ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection

interferon, friend or foe

No comment yet.
Scooped by Gilbert C FAURE
Scoop.it!

Innate Immunity: Signaling Host Defenses - Howard Hughes Medical Institute

Innate Immunity: Signaling Host Defenses - Howard Hughes Medical Institute | Immunology | Scoop.it
New studies by HHMI scientists show how cells use sophisticated signaling mechanisms to control production of interferon.
Gilbert C FAURE's insight:

Chen explains that each of the three type I interferon-triggering pathways recognizes a particular signal of infection. Invading viruses and bacteria often deliver and replicate their genetic material in the main compartment of the cell known as the cytoplasm, where host DNA is not normally found. A sensor protein called RIG-I detects viral RNA in this cytosolic compartment, which usually indicates the presence of an RNA virus. Cytosolic DNA, which can be introduced by a variety of microbes, including bacteria, DNA viruses, and retroviruses, is detected by a sensor called cGAS, which Chen's lab discovered in 2012. Nucleic acids in membrane-bound compartments called endosomes also indicate viral infection, and are detected by sensors called Toll-like receptors.

Each of these three receptors cooperates with its own adaptor protein to relay its message that an invader is present and interferon is needed. Toll-like receptors work with an adaptor called TRIF, the cGAS receptor works with the adaptor protein STING, and the RIG-I receptor pairs with an adaptor that Chen's lab discovered in 2005 called MAVS.

No comment yet.